Metric unconditionality and Fourier analysis

نویسنده

  • Stefan Neuwirth
چکیده

We study several functional properties of isometric and almost isometric unconditionality and state them as a property of families of multipliers. The most general such notion is that of “metric unconditional approximation property”. We characterize this “(umap)” by a simple property of “block unconditionality” for spaces with nontrivial cotype. We focus on subspaces of Banach spaces of functions on the circle spanned by a sequence of characters e. There (umap) may be stated in terms of Fourier multipliers. We express (umap) as a simple combinatorial property of this sequence. We obtain a corresponding result for isometric and almost isometric basic sequences of characters. Our study uses the following crucial property of the L norm for even p: ∫ |f |p = ∫ |fp/2| = ∑ |f̂p/2(n)| is a polynomial expression in the Fourier coefficients of f and f̄ . As a byproduct, we get a sharp estimate of the Sidon constant of sets à la Hadamard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditionality with Respect to Orthonormal Systems in Noncommutative L2 Spaces

Orthonormal systems in commutative L2 spaces can be used to classify Banach spaces. When the system is complete and satisfies certain norm condition the unconditionality with respect to the system characterizes Hilbert spaces. As a noncommutative analogue we introduce the notion of unconditionality of operator spaces with respect to orthonormal systems in noncommutative L2 spaces and show that ...

متن کامل

Uniform Minimality, Unconditionality and Interpolation in Backward Shift Invariant Spaces

ABSTRACT. We discuss relations between uniform minimality, unconditionality and interpolation for families of reproducing kernels in backward shift invariant subspaces. This class of spaces contains as prominent examples the Paley-Wiener spaces for which it is known that uniform minimality does in general neither imply interpolation nor unconditionality. Hence, contrarily to the situation of st...

متن کامل

Partial unconditionality of weakly null sequences

We survey a combinatorial framework for studying subsequences of a given sequence in a Banach space, with particular emphasis on weakly-null sequences. We base our presentation on the crucial notion of barrier introduced long time ago by Nash-Williams. In fact, one of the purposes of this survey is to isolate the importance of studying mappings defined on barriers as a crucial step towards solv...

متن کامل

Partial Unconditionality

J. Elton proved that for δ ∈ (0, 1] there exists K(δ) <∞ such that every normalized weakly null sequence in a Banach space admits a subsequence (xi) with the following property: if ai ∈ [−1, 1] for all i∈N and E⊂{i∈N : |ai|≥ δ}, then ‖ ∑ i∈E aixi‖≤K(δ)‖ ∑ i aixi‖. It is unknown if supδ>0 K(δ) < ∞. This problem turns out to be closely related to the question whether every infinite-dimensional Ba...

متن کامل

ar X iv : m at h . FA / 0 51 06 09 v 1 2 7 O ct 2 00 5 Partial Unconditionality

J. Elton proved that for δ ∈ (0, 1] there exists K(δ) < ∞ such that every normalized weakly null sequence in a Banach space admits a sub-sequence (xi) with the following property: if ai ∈ [−1, 1] for all i ∈ N and E ⊂ {i ∈ N : |ai| ≥ δ}, then i∈E aixi ≤ K(δ) i aixi. It is unknown if sup δ>0 K(δ) < ∞. This problem turns out to be closely related to the question whether every infinite-dimensional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998